A.

Adult females	129S2
Control: n=126 | Dazl-deficient: n=40

Juvenile males	129S2
Control: n=148 | Dazl-deficient: n=35

\[P = 0.057 \]

B.

Adult females	129SF1
Control: n=83 | Dazl-deficient: n=78

\[P = \text{ns} \]

C.

Adult females	129S4
Control: n=23 | Dazl-deficient: n=23

Juvenile males	129S4
Control: n=66 | Dazl-deficient: n=25

\[P = \text{ns} \]

D.

Juvenile males	129S4
Control: n=50 | Dazl-deficient: n=50

\[P = \text{ns} \]

E. Testicular teratomas in 129S4 Dazl/Bax double knockout mice

\[n=17 \]

F. Ovarian teratomas in 129S4 Dazl/Bax double knockout mice

\[n=23 \]
Fig. S6. Rate of spontaneous teratoma formation in mice.

(A) Incidence of gonadal teratomas in control and 129S2.\textit{Dazl}-deficient mice. Females were dissected at two months of age, and males at four weeks of age. (B) Incidence of gonadal teratomas in 129SF1.\textit{Dazl}-deficient mice. Females and males were dissected at three months of age. (C) Incidence of teratomas in control and 129S4.\textit{Ddx4}-deficient mice. Females dissected at two months of age, and males at four weeks of age. (D) Incidence of testicular teratomas in \textit{Gcna}-deficient mice. Males were dissected at 28 days of age. (E) Incidence of testicular teratomas in control, 129S4.\textit{Dazl}- and \textit{Bax}-deficient male mice, dissected at 28 days of age. (F) Incidence of ovarian teratomas in control, 129S4.\textit{Dazl}- and \textit{Bax}-deficient female mice, dissected at two months of age. n = number of animals examined, NA = not assessed, *** < 0.001 using Fisher’s exact test.